
© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

Privacy-aware Context Discovery for Next Generation Mobile Services

Cristian Hesselman, Henk Eertink, and Martin Wibbels
Telematica Instituut, The Netherlands

{Cristian.Hesselman, Henk.Eertink, Martin.Wibbels}@telin.nl

Abstract

We present a system that enables applications to

discover and obtain information that describes the
context of a particular entity (e.g., a user or a device).
Our system revolves around the notion of a context
agent, which is a service that represents an entity and
provides access to context information about that
entity. Context agents facilitate the enforcement of an
entity’s policies regarding the release of context
information (e.g., to applications or visiting users),
even while these entities roam across different
administrative domains. Context agents form an
overlay on top of traditional local area service
discovery infrastructures (e.g., based on SLP or WS-
Discovery) and are enablers for more intelligent
pervasive computing environments. In this extended
abstract, we outline the architecture of our system
based on a simple scenario.

1. Introduction

Context-awareness is a key function of systems that
operate in pervasive computing environments. It is
made possible by recent innovations in sensor
technology, wireless communications, and personal
devices. Context-aware systems are able to
dynamically adapt the delivery of a service, for
instance to the environment of a service user or to the
activities that user is currently engaged in.

In this extended abstract, we consider the problem
of discovering and obtaining context information about
entities (e.g., users or devices) that roam across
intelligent environments in different administrative
domains. By an intelligent environment we mean a
place that provides context information (e.g., about
itself) and also collects it (e.g., about users in the
place). We illustrate this problem by means of a simple
scenario in which a user Bob carries a smart phone and
enters an intelligent environment in a foreign domain.
The objective of our system is to enhance the

information that describes Bob’s context with context
information that the foreign environment gathered
about Bob (e.g., using temperature sensors in the
foreign environment). An important requirement is that
the system should enforce the policies of Bob and
those of the foreign domain regarding the release of
context information. Bob should furthermore be able to
remain relatively anonymous in the foreign domain.

To accomplish this, we introduce the notion of
context agents. These discoverable software entities
provide a single point of access to the (aggregated)
context information about a particular entity (e.g., a
user or a device), including context information
gathered by a foreign domain. A context agent can be
located through an identity such as bob@domain. In
the scenario, we assume that Bob’s friend Alice wants
to obtain context information about Bob and that she is
aware of his identity.

We show how context agents play an important role
in the interface between ‘raw’ sources of context
information (e.g., GPS devices and temperature
sensors) and context-aware applications and services.
From a privacy perspective, a context agent operates as
a policy enforcement point on behalf of the entity that
it represents.

The rest of this extended abstract is organized as
follows. First, we introduce the basic features of our
Context Management Framework (CMF) [4], which is
a distributed system on which context agents build. We
illustrate some of the shortcomings of the CMF in
inter-domain scenarios. Next, we describe our context
agent extension, which adds the controlled exchange
of context information. This work is an extension of
the work presented in [3] and fits within the service
platform concepts introduced in [6].

2. Context Management Framework

The CMF [4] consists of different types of services,
instances of which may be distributed across different
administrative domains. The main types of services in
the CMF are context sources and context brokers. A

context source stores context information and makes it
available to applications. Applications access a context
source through a well-defined interface, which
provides access to the context information stored by
the context source (both synchronously and
asynchronously). Context sources can wrap physical
sensors or entire sensor networks, but they can also
aggregate context information from other context
sources or reason about that information to infer new
context information (bottom-up inference).

A context broker enables applications or other
context sources to discover context sources that can
provide a particular type of context information. A
context source registers with a single context broker,
which maintains a directory of registered context
sources. A context broker is part of the same domain
as the context sources that register with it and may
reside on the same (mobile) device. The latter will
enable the context broker to manage the lifecycle of its
registered context sources. A context broker is
discoverable in its own network, using local service
discovery protocols like SLP or WS-Discovery.

The CMF is very flexible in terms of distribution
properties (it can operate in peer-to-peer and
centralized scenarios) and in terms of context
reasoning (it is easy to add new types of sensors or
new reasoning engines), but has two limitations. First,
it does not support inter-domain discovery of context
sources. As a result, applications may need to query
many context brokers in many different domains to
find the context sources that provide context
information about a particular entity (e.g., a user). This
puts a serious burden on applications and thus does not
scale well. This problem is worsened by the dynamic
nature of pervasive computing environments, which
means that the set of relevant context source changes
frequently (e.g., as a result of roaming). The second
limitation is that context brokers are privacy-unaware,
which makes them unsuitable for any realistic
pervasive computing environment as is. We solve
these problems by adding a context agent layer on top
of the CMF.

3. Context Agents

A context agent is a discoverable service that
represents an entity and maintains references to context
sources that can provide context information about that
entity. The entities we consider may be mobile and
may be physically part of an intelligent environment
that is not trusted (e.g., a wall-mounted display at a
customer’s premises). In this abstract, we focus on
context agents for users and devices, but in general we

also distinguish places and services (cf. [1, 2]).
Observe that a context agent can be realized in various
ways, for instance as a web service [1].

A context agent has at least one identity (e.g.,
bob@domain for a user or building@campus.nl for a
place). This is also the main difference between a
context agent and a context broker: a context agent is
tightly bound to an identity (and to synonyms of that
identity), whereas a context broker is unaware of
identities and can form a rather arbitrary grouping of
context sources (e.g., the context sources available on
a particular device or in a particular domain).

We assume that applications use a well-known
name resolution infrastructure to resolve an identity
into a reference to the entity’s context agent. We
currently use SIP, but a DNS-resolvable service could
be used as well. Actual name resolution mechanisms
are however outside the scope of our work.

Given a reference to the proper context agent, an
application can query that context agent for certain
types of context information (e.g., location
information). The context agent responds to such a
query with a reference to a proxy context source,
which sits between the application and the context
source that can provide the actual context information.
The main responsibility of a proxy context source is to
enforce the privacy policies set by the owner of the
context agent (see Section 4). A proxy context source
also helps to reduce the resources that mobile nodes
need to host context sources. In this case, a proxy
caches context information of the actual context source
and performs subscription management (the proxy
sends out an event whenever the context changes).

4. Privacy

One of the responsibilities of a context agent is to
enforce the privacy of its owner. By privacy policies
we mean the rules that define when an entity (e.g., a
user) whishes to release context information about
itself to applications or other entities. An example of a
privacy policy is “if I’m not at work, then only my
family members can see my location”.

The policies in our system allow users to specify the
conditions under which context information may be
released and to whom (e.g., based on the time of day),
which types of context information can be released,
and what the ‘quality’ of that information should be
(e.g., location information in the form of GPS
coordinates, a street name, or GSM cell IDs).

Context agents enforce privacy policies in two
steps. First, a context agent checks its privacy policies
against queries from applications for certain types of

context information (see Section 3). For that purpose,
the application has to present some proof that indicates
that it is authorized to access this information (we will
use SAML for that, which will allow us to integrate the
CMF with identity management solutions).
If the application is authorized, the context agent
creates a proxy context source (see Section 3) that will
enforce the entity’s privacy policies. The context agent
configures the proxy to make sure that it returns
context information at a suitable quality level
(accuracy, timeliness) [5] when the application calls
the proxy.

Figure 1 illustrates this behavior in case a client
application on Alice’s machine wants to get Bob’s
location. To accomplish this, the application sends a
query message to Bob’s context agent. Bob’s context
agent knows that Bob owns a smart phone and
therefore forwards this requests to the context agent of
the smart phone (“CA(smartPhone)”). The smart
phone’s agent checks whether Alice is allowed to get
Bob’s location, creates a proxy for the location context
source, and returns the reference to the proxy back to
the application. Alice’s application can subsequently
retrieve/subscribe to context information using this
proxy. Observe that the ownership relationship
between the two context agents is pre-configured using
domain configuration management tools.

C(Alice) CA(smartPhone)

query(location, accessToken)

locationCS

= policy checkP

Proxy(locationCS)

getContext(location)

getContext(location)

location information

Proxy(locationCS)

create(policies, Proxy(locationCS))

Proxy(locationCS)

P
location information

CA(Bob)

query(location, accessToken)

Proxy(locationCS)

P

P

Figure 1. Policy enforcement, single domain.

The P’s in Figure 1 mark the places where Bob’s

policies are enforced. The final policy check in the
proxy may change the location information returned to
the application to enforce the privacy policies of Bob’s
mobile device (e.g., return a street name instead of the
GPS coordinates provided by the context source).

The scenario in Figure 1 focuses on single domain
aspects (the context sources are part of the same
network as the context agent). In the next section, we
will illustrate our roaming concepts.

5. Privacy-aware Roaming

Pervasive computing environments typically enable
users to make use of services, devices, and information
existing in their local environment (e.g., in a smart
room). The objective of our system is to enhance the
information that describes an entity’s context with
context information that the local environment has
gathered about that entity (e.g., using temperature and
location context sources), in particular when the entity
resides in a foreign domain. An important requirement
to accomplish this is that our system enforces both the
entity’s privacy policies as well as those of the foreign
domain.

In our approach, the context agent of an entity runs
in that entity’s home domain (e.g., a residential
network or an operator’s network) and continues to be
responsible for enforcing the entity’s privacy policies.
It also continues to be the single point of access for
context information about the entity, even when the
entity has roamed to a foreign domain.

To be able to publish context information gathered
by a foreign domain, an entity’s context agent links to
a Temporary Context Agent (TCA). A TCA represents
an entity when it visits a foreign domain and enforces
the privacy policies of that domain. A TCA runs in the
foreign domain and links to context sources in that
domain that can provide context information about the
entity. Observe that our framework requires trusted
relationships between context sources and context
agents, which means that mobile nodes cannot directly
access context sources in foreign domains.

Figure 2 shows an example in which Bob resides in
a foreign domain F. The context agent of Bob’s smart
phone resides in Bob’s home domain and links to a
TCA in domain F. This TCA represents the smart
phone in F as long as Bob resides in F. As we will see
below, the context agent uses the TCA to provide
information about the ambient light level around Bob
to Alice’s client application.

Figure 2 also shows the main components of our
system. When Bob’s smart phone enters an intelligent
environment in F, the Context Agent Discovery Client
(CADC) on the phone discovers the Context Agent
Manager (CAM) of F (1). A CAM is a component that
configures all context agents in a particular domain,
including the TCAs. The CADC requests the CAM to
create a TCA for the smart phone (2), after which the
CAM configures the new TCA with a few context
sources that are part of F (3). The CAM then returns a
reference to the TCA to the CADC (4).

The CADC subsequently links the TCA with its
own context agent in the home domain (5). This

association will make it possible for clients to obtain
context information about Bob’s smart phone gathered
by foreign domain F. From a security perspective, the
CAM will give the CADC temporary credentials that
allow a component with those credentials to access the
TCA created for Bob’s smart phone. The CADC will
register these credentials with the smart phone’s
context agent in Bob’s home domain (5) so that the
context agent can use the TCA.

Figure 2. Policy enforcement, inter-domain.

The client application on Alice’s machine obtains

information about the ambient light level at Bob’s
current location by sending a query to the context
agent of Bob’s smart phone (see Section 3). This
context agent forwards that request to the TCA in F,
which creates (6) a proxy context source (see Section
3). The proxy enforces the privacy policies of its
owner, domain F. The context agent of the smart
phone creates another proxy, which enforces Bob’s
privacy policies. The information that Alice’s client
requests will flow from the light context source in F
back to the client through both proxies, thus ensuring
that both Bob’s and F’s policies will be enforced.

From a privacy perspective, it is important to note
that the identity of Bob is not revealed to F. The ‘only’
requirement that we have is that Bob needs to have
access to F’s network. Bob may use a completely
different identity (e.g., using a scratch card) to access
this network, and remain relatively private in his
current environment.

6. Summary

In this extended abstract, we described a context
management infrastructure that supports two layers: a
context agent layer that gives applications and services
easy-to-use access to context information and a context

source layer that provides features for interpretation
and inference of context information. We also showed
how this infrastructure obtains contextual information
and that it preserves privacy in scenarios that involve
unrestricted mobility in combination with ubiquitous
networking. Our framework is a natural extension of
service platforms for home, enterprise, operator, and
hotspot environments.

The work we described in this extended abstract is
ongoing. We are currently implementing it on top of
the CMF.

Acknowledgements

This work is part of the Freeband AWARENESS
project. Freeband is cosponsored by the Dutch
government under contract BSIK 03025. In particular
we thank our colleagues Remco Poortinga, Andrew
Tokmakoff and Niels Snoeck for the fruitful
discussions on the topics presented in this paper.

References

[1] P. Debaty and D. Caswell, “Uniform Web presence

architecture for people, places, and things”, IEEE
Personal Communications, Aug. 2001, pp. 46-51

[2] A. Dey, D. Salber, and G. Abowd, “A Conceptual
Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications”, Special
issue on context-aware computing; Human-Computer
Interaction (HCI) Journal, 2001, pp. 97-166

[3] C. Hesselman, A. Tokmakoff, P. Pawar, and S. Iacob,
“Discovery and Composition of Services for Context-
Aware Systems”, 1st European Conference on Smart
Sensing and Context (EuroSCC'06), Enschede, The
Netherlands, October 2006

[4] H. van Kranenburg, M. S. Bargh, S. Iacob, A.
Peddemors, “A Context Management Framework for
Supporting Context-Aware Distributed Applications”,
IEEE Communications Magazine, Aug. 2006

[5] K. Sheikh, M. Wegdam, M. van Sinderen,
“Enforcement of Dynamic Privacy Policies in
Distributed Context-Aware Systems”, Adjunct
Proceedings of the 4th International Conference on
Pervasive Computing, Dublin, Ireland, May 2006

[6] M.J. van Sinderen, A.T. van Halteren, M. Wegdam, H.
Meeuwissen, E.H. Eertink, “Supporting Context-
Aware Mobile Applications: An Infrastructure
Approach”, IEEE Communications Magazine,
September 2006

