
Reputation Metrics Design to Improve Intermediary Incentives
for Security of TLDs
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Abstract—Over the years cybercriminals have misused the
Domain Name System (DNS) – a critical component of the
Internet – to gain profit. Despite this persisting trend, little
empirical information about the security of Top-Level Domains
(TLDs) and of the overall ‘health’ of the DNS ecosystem exists.
In this paper, we present security metrics for this ecosystem
and measure the operational values of such metrics using three
representative phishing and malware datasets. We benchmark
entire TLDs against the rest of the market. We explicitly dis-
tinguish these metrics from the idea of measuring security per-
formance, because the measured values are driven by multiple
factors, not just by the performance of the particular market
player. We consider two types of security metrics: occurrence of
abuse and persistence of abuse. In conjunction, they provide
a good understanding of the overall health of a TLD. We
demonstrate that attackers abuse a variety of free services
with good reputation, affecting not only the reputation of those
services, but of entire TLDs. We find that, when normalized
by size, old TLDs like .com host more bad content than new
generic TLDs. We propose a statistical regression model to
analyze how the different properties of TLD intermediaries
relate to abuse counts. We find that next to TLD size, abuse
is positively associated with domain pricing (i.e. registries who
provide free domain registrations witness more abuse). Last but
not least, we observe a negative relation between the DNSSEC
deployment rate and the count of phishing domains.

1. Introduction

The Internet is a rather random collection of interwoven
actors, pieced together through years of common practices.
There was no true regulation of domain names until 1998
when ICANN was established. Before then, one man, Jon
Postel, was in charge of administering the Internet Assigned
Numbers Authority, later to be incorporated into ICANN.
Even today, alternative domain name allocations such as
Namecoin1 and .onion domains exist outside of the limits
of regulatory authorities such as ICANN.

Each top-level domain or TLD is responsible for its
own common practices. While each TLD is ultimately held
responsible by ICANN, there is a large variation underneath.

1. http://namecoin.info/

The reputation of each TLD is influenced by other operators
in the space, such as registrars, webhosting companies and
name server operators. There are a number of characteristics
that influence the TLD’s health in terms of the concentra-
tion of cyberciminal abuse. The explanatory factors can be
divided into: i) generic structural properties of TLDs such
as the number of domains in registry or the business model
of underlying players and ii) properties directly related to
security efforts. For example, the concentrations of domain
abuse are, to a large extent, a function of the size of the TLD.
In other words, the number of domains in a TLD registry
can be seen as an approximation of the attack ‘surface size’
for cybercriminals. The business type of registries or hosting
providers is also relevant. For example, the pricing strategy
(e.g., free registration and free basic hosting program) com-
bined with a lack of a verification process of the registrant’s
identity may decrease the unit cost of domain abuse and,
as our results suggest, increase immensely the number of
domains registered explicitly for malicious purposes.

We propose security metrics to measure and benchmark
entire TLDs against the rest of the market and try to distill
the relevant factors that may influence domain abuse rates.
We develop two types of security metrics for TLDs, using
representative phishing and malware domain abuse feeds: i)
occurrence of abuse, which reflects concentrations of abused
domains and depends on both structural properties of TLDs
and preventative security practices of their intermediaries,
and ii) persistence of abuse, which reflects how fast the
TLD intermediaries respond once they are notified about
abused domains and depends on their reactive security prac-
tices. In conjunction, the proposed metrics provide a better
understanding of the overall health of a TLD. We view
the proposed metrics as health indicators of the ‘domain
name ecosystem’ of individual TLDs. We explicitly dis-
tinguish these metrics from the idea of measuring security
performance, because the measured values are driven by a
range of factors, not just by the performance of a particular
intermediary.

We also propose a statistical regression model to analyze
how the different properties of TLD intermediaries relate
to the amount of abuse in their networks. In other words:
What features explain the abuse concentrations observed in
domain names registered under different TLD?

Overall, our paper makes the following contributions:



• We generate three TLD occurrence metrics measuring
the relative ‘amount of badness’ in a particular TLD
in Section 4.1. All reputation metrics are normalized
by size which we carefully measure in Section 3.2.1.
We find disproportionately low attacker interest in new
gTLDs and disproportionately high attacker interest in
large gTLDs.

• In addition to the occurrence rate of abused domains,
we find that the two complementary metrics are useful;
the rate of abused fully-qualified domain names and
URLs. These reveal that the profit-maximizing behavior
of some attackers lead them to abuse services with good
reputation and free domain registration services.

• Next to the occurrence rate of domain abuse, in Sec-
tion 5 we study the mean and median uptimes of abused
domains via survival analysis. We find that uptime
security metrics of certain TLDs are skewed by single
phishing incidents.

• In Section 5.3, we compare the median uptime metric
of phishing websites and the number of blacklisted
domains by the Anti-Phishing Working Group but we
do not find a strong correlation as each captures a
different aspect of security practices.

• We systematically analyze how different structural and
security-related properties of TLD operators influence
abuse counts in Section 6; we find that next to TLD
size, abuse primarily correlates with domain pricing
(free versus paid registrations), efforts of intermedi-
aries (measured through the proxy of their DNSSEC
deployment rate), and strict registration policies.

2. Background and Related Work

Domain names are one of the fundamental components
of the Internet ecosystem and central to the broad range of
Internet scams that seek to attract user traffic to particular
websites [1], [2]. Several entities play a role for a domain
name to be registered, secured and maintained on the Web.
In this section we provide a brief overview of the domain
name ecosystem and the various actors that are involved at
its different layers.

2.1. Domain Name Ecosystem

The Internet Corporation for Assigned Names and Num-
bers (ICANN) [3] approves all top-level domains (TLDs)
and delegates the responsibility to a particular organization
(“registry operators”,“sponsors” or “delegees”) to maintain
an authoritative source for registered domain names within
a TLD [4]. Domain registries manage the registration of
domain names within their TLDs and generate zone files
that list domain names with their authoritative name servers
and registration date.

TLDs can be categorized into three main groups [5]:
i) country code TLDs (ccTLDS) or TLDs with two letters
established for more than 250 countries and country codes.
The represented region sets the policies for such TLDs,

ii) generic TLDs (gTLDs) or TLDs with three or more char-
acters such as .com or .amsterdam, and iii) .arpa – a
special TLD that is used for technical infrastructure.

Several other entities play a role for a domain name to
be registered, secured and maintained on the Web. Domain
registrars manage the registration of Internet domain names.
Registrars must be accredited by a gTLD registry and/or
a ccTLD registry according to ICANN guidelines. Web
hosting providers host servers which domain names point
to. Finally, Domain Name Aystem (DNS) providers operate
DNS servers that map domain and host names to their
corresponding Internet Protocol (IP) addresses. Autonomous
Aystems (AS) route sets of IP addresses.

Many of these actors play multiple roles. For instance,
the .tk registry also registers .tk domains. Similarly,
many large market players such as GoDaddy offer regis-
tration, web hosting, and DNS services simultaneously.

2.2. Security Metrics

To mitigate domain name abuse more effectively differ-
ent classes of intermediaries such as registries, registrars or
hosting providers should be able to benchmark themselves
against their market. Currently, there exists very little empir-
ical information about the security of TLDs and the overall
DNS ecosystem. However, a number of studies include
security metrics as a part of their analysis.

Levchenko et al. find some registrars, ASes and banks
which are disproportionately popular among criminals, pos-
sibly due to their security practices [6]. Moore and Edelman
find a concentration of typosquatted domains on a small
number of name servers [7]. Korczyński et al. illuminate the
problem of non-secure DNS dynamic updates, which allow
a cybercriminal to manipulate DNS entries in the zone files
of authoritative name servers. They find that 66.2% of vul-
nerable domains are hosted on the infrastructure of a single
broadband Internet Service Provider (ISP). Reconfiguring
zone files of just 10 providers would reduce the prevalence
of the problem with 88.6% [8]. Ma et al. use name server
and registrar information to distinguish malicious URls from
benign ones [9]. Hao et al. observe that 46% of the spam
domains come from just two registrars [10]. However, they
consider only the .com TLD and do not consider the size
estimate for smaller registrars which might register a dis-
proportionate amount of malicious domains. Antonakakis et
al. develop a dynamic reputation system using passive DNS
data to classify legitimate and malicious domains and assign
a reputation score to the new domains [1]. Our work does
not rank individual domains but rather designs reputation
metrics for the TLDs.

Numerous studies attribute security incidents to hosting
providers by equating them with ASes. The number of
incidents is often normalized by the AS size [11], [12].
Mahjoub investigates the concentration of maliciousness in
ASes by analyzing hosted content, AS topology and IP
space reservation [13]. Noorozian et al. present a systematic
approach for metrics development and identify the main
challenges that plague metric design [12]. In the process,



TABLE 1: Blacklists statistics: unique domains, FQDNs,
URLs, or IP addresses for the StopBadware SDP and APWG
datasets from 2014 and 2015.

Year Dataset # domains # FQDNs # URLs #IPs

2014 StopBadware 694198 1135318 2329437 15127
APWG 102868 1001626 10473941 3496

2015 StopBadware 701400 997350 8931660 13878
APWG 233401 1954315 34356755 7180

they answer an urgent question posed to them by the Dutch
police: “Which are the worst hosting providers under our
jurisdiction?”. Other studies identify malicious ASes using
AS topology, BGP-related features and by exploring ASes
providing transit for malicious ASes [14]–[16].

In the most similar study to our paper, van Eeten et al.
design security metrics for ISPs by mapping data on the
location of infected machines onto broadband markets [17].
They find that the bulk of infected machines are located
in well-known, legitimate ISPs in industrialized countries;
around 50% of the world’s infection comes from only 50
providers. Even providers with similar sizes have differences
in infection rates of up to three orders of magnitude, even
within a single country such as Germany or the U.S., where
the providers operate under similar market and regulatory
incentives.

We propose security metrics to measure and benchmark
entire TLDs against their market. We consider a range of
factors such as TLD size or popularity of sites and support
more informative inferences from domain abuse data for
security. We explicitly distinguish the metrics from the idea
of measuring security performance because the measured
values of our metrics are driven by multiple factors, not just
by the performance of the particular market player. This is
because a TLD is not a single organization but constitutes
an entire “domain name ecosystem” of different types of
players that all influence the TLD’s security posture.

3. Data Collection

3.1. Abuse Data

3.1.1. Blacklists. To asses the prevalence of maliciously
registered and compromised domains per TLD, we use two
heterogeneous blacklists provided by StopBadware [18] and
the Anti-Phishing Working Group (APWG) [19]. The Stop-
Badware Data Sharing feed consists of blacklists shared by
ESET, Fortinet, and Sophos security companies [20]–[22],
Google’s Safe Browsing appeals results, Internet Identity,
Malware Must Die and the StopBadware community. The
APWG feed consists of online phishing URL block/white
lists with accompanying confidence level indicators submit-
ted by accredited users through the eCrime Exchange (eCX)
platform.

Table 1 shows the number of unique domain names,
fully-qualified domain names (FQDN), URLs, or unique
IP addresses (if domains were not reported) in these data

Figure 1: Venn diagram of blacklisted domains in two
different datasets.

feeds for 2014 and 2015. Notice that we define domain
names as 2nd–level or 3rd–level if a given TLD registry
provides such registrations, e.g. *.com.pl, *.net.pl,
*.gov.pl, etc. To extract domain names from our feeds,
we use a modified version of the public suffix list maintained
by Mozilla [23], which for example considers com.pl and
net.pl to be TLDs. For the purpose of this study we have
excluded all private TLDs such as s3.amazonaws.com
or blogspot.com. Figure 1 shows the overlap between
the two analyzed data feeds in 2014 and 2015 in the form
of a venn diagram. In 2015, for example, the StopBadware
dataset contains 535,697 domains that were not identified
as malicious by either APWG in 2014 and 2015 or Stop-
Badware in 2014. It corresponds to 34.8% of all domains
blacklisted by both organization in both periods.

3.1.2. Uptimes. We analyze the uptime of phishing web-
sites with data that was generously provided to us by the
Cyscon GmbH security company [24]. The dataset contains
the following information about phishing websites: i) the
‘first time seen’ defined as the moment the responsible
intermediary has been notified about an abused website, ii)
the ‘last time’ the website is seen online and iii) a binary
variable that indicates whether it has ever been taken offline.
The dataset contains 137,577 phishing URLs associated with
48,224 FQDNs. Note that for the websites that are only
seen once, the first time seen value is equal to the last
time seen, indicating that they were taken down before the
second measurement. These are logged as having an uptime
of 0 hours. The data contains phishing websites that were
collected between June 2015 and January 2016.

3.2. TLD Properties

To analyze the differences in abuse incident counts be-
tween TLDs, we collect a number of structural and security
effort related properties for the entire population of TLDs. In
the upcoming sections of the paper we use these properties



to model phishing abuse counts and further explain the
variation of these counts among TLDs.

Figure 2: Comparison of TLD size: DNSDB size estimates
vs. zone file size.

3.2.1. Number of Unique Domains. To obtain a meaning-
ful, quantitative security metric, representing the distribution
of blacklisted domains per TLD, we first need to estimate
their sizes. The obtained sizes can be used as a normalization
factor for the amount of ‘badness’ in each TLD. Once nor-
malized, TLDs can be compared in terms of the prevalence
of blacklisted domains.

We calculate the size of each TLD by counting the
number of 2nd–level domains registered in that TLD. In
some cases, however, it is also possible to register 3rd–
level domains within a TLD registry. For example, the .cn
TLD (China) allows domain registration under com.cn,
net.cn, etc. For such cases, the size of the TLD includes
3rd–level domains.

Zone files are the most accurate source for TLD size. We
obtain the .com, .net and .name zone files from Verisign
[25], [26]. We also perform zone transfers to replicate the
DNS databases of the .nl zone file under the contract of
Stichting Internet Domeinregistratie Nederland (SIDN)—the
.nl ccTLD registry [27]. Finally, we collect zone files from
the .us ccTLD, the .biz gTLD and all new gTLDs made
available by ICANN [28]. Note, however, that not all TLD
zone files are openly available. In fact, most of the ccTLD
registries are against making their zone files available to
third parties. For this reason, we have collected further in-
formation on sizes of ccTLDs affiliated with the Council of
European National Top Level Domain Registries (CENTR)
association [29] from their monthly growth reports and sizes
reported in the APWG Global Phishing Survey in early
2015 [30] in addition to size information from Domain
Tools published in January 2016 [31]. We have crosschecked
the collected size information with the number of DNS A
records passively observed over the year 2014 in DNSDB –
a passive-DNS dataset generously provided to us by Farsight

Security [32], [33] – which we use to estimate remaining
TLD sizes.

Ordered by accuracy, our datasets for calculating TLD
size are: i) zone files, ii) APWG or DomainTools size
information and iii) DNSDB.

Figures 2 and 3 provide a comparison between size
estimates we calculate based on the DNSDB and other data
sources. In Figure 2 we observe an interesting cluster of
TLDs for which sizes were largely overestimated based on
the DNSDB data. These are due to name collisions in the
DNS system related to the introduction of new gTLDs by
ICANN. For example, the zone file for the .new TLD
consist of only 2 domains of which one has been observed in
DNSDB. In addition to the one legitimate .new domain, we
have observed 30, 311 non-unique 2nd–level domains out of
which 30, 283 resolved to the special ICANN’s IP addresses
‘127.0.53.53’ indicating a name collision occurrence and
raising an alert of a potential issue [34].

Figure 3 compares the size estimates for DNSDB with
APWG TLD sizes. Apart from some outlying examples such
as .ph (for which APWG has also estimated its size), the
size information of both datasets are relatively consistent.

The presented figures demonstrate that, except for the
newly introduced gTLDs, the three TLD size estimates
can reliably and interchangeably be used for TLD size
calculation. Notice, however, that overestimations of new
gTLDs based on the DNSDB data can be easily corrected
by filtering out all the passively observed DNS records
resolving to a special ICANN’s 127.0.53.53 IP address.

Figure 3: Comparison of TLD size: DNSDB size estimates
vs. APWG size.

3.2.2. Number of Unique Domains on Shared IPs. We
consider an IP address shared, if it hosts more than 10
domain names [35]. We expect that the number of domains
on shared IPs to correlate positively with the domain abuse
counts of TLDs due to commonly known vulnerabilities of
shared hosting services [36] assuming that attackers would



compromise rather than register phishing or malware do-
mains. This variable combined with the number of unique
domains in each registry conveys information about the
degree to which the business model of hosting providers
relies on low-cost shared hosting services. It is calculated
based on A records passively observed in DNSDB during
2015.

3.2.3. Domain Popularity Index. To asses the online pop-
ularity of domains we use the Alexa top-ranked one million
domains [37]. Accredited domain registrars that often pro-
vide hosting services are assumed to ensure better security
measures if they host popular websites. We calculate the
domain popularity index by summing up reversed Alexa
ranks for the 2nd–level domains and aggregate them per
TLD. The most popular domain gets the rank 1. Its score is
calculated as 6−log10(rank). We calculate a score per TLD
by summing up individual scores of all ranked domains.

3.2.4. URL Shortener Popularity Index. A variety of
studies suggest that miscreants tend to misuse legitimate
services such as cloud-based file sharing, free hosting and
URL shorteners. They are abused for phishing campaigns or
drive-by download campaigns [38], [39]. We maintain a list
of 332 domains of the most popular URL shortener services
such as goo.gl, bit.ly, etc. and calculate scores sim-
ilar to the domain popularity index. The obtained variable
indicates to which extend the level of domain abuse can be
explained by the exploitation of legitimate services by the
attackers.

3.2.5. Free. Finding reliable pricing information for TLDs
is complex mainly because of the many actors involved in
domain registration. For example, when someone registers a
$10 .com domain, ICANN charges only $0.18, the registry
fee charged by Verisign, Inc. is fixed and equal to $7.85.
Finally, registrar may charge $1.97. Price may vary de-
pending on TLDs, registrars or resellers involved in domain
registration. Some web hosting companies offer registration
discounts if it is combined with the hosting service, etc.

Previous studies show that miscreants benefit from cheap
or free domain registrations via promotions [30]. However,
as it is difficult to collect pricing data at scale, we divide
TLDs into two groups: those that offer free registrations and
those that offer only paid ones. The first group is composed
of five TLDs only: .tk, .ml, .ga, .cf and more recently,
starting from January 1, 2015, .gq TLD, all operated by
Freenom [40].

3.2.6. Restricted Registration. We label TLDs as “re-
stricted” or “unrestricted” depending on specific registration
limitations. Some blacklisted domains are registered ma-
liciously, by cybercriminals, rather than hacked. Although
they are mainly due to cheap and free domain name registra-
tions, certain restrictions regarding the content of the website
or the eligibility of registrants may increase the cost of an
online crime and discourage cybercriminals from registering
domains with certain TLDs. “Restricted” TLDs consist of:

• Sponsored gTLDs such as .post operated by Uni-
versal Postal Union or .gov restricted to government
entities in the United States,

• Brand gTLDs like .bmw, .youtube or .cern,
• Community gTLDs such as .abogado restricted to

licensed lawyers or .pharmacy for which all the
registrants are verified if they meet all applicable reg-
ulatory standards [41],

• Geographic gTLDs such as .berlin, .cat or
.asia, and certain ccTLDs such as .sk restricted to
Slovak companies, organisations and citizens.

3.2.7. Age. Age might be a proxy for how experienced a
TLD registry is. However, for example, the founders of new
gTLDs such as Donuts Inc. have years of experience in the
domain name industry [42]. We would then expect certain
new gTLDs to attract less abuse as it is easier to deploy
certain security measures on a smaller scale. The variable is
expressed in years and it is calculated since a given TLD was
introduced. For example, .com TLD has been operational
for 31 years.

3.2.8. DNSSEC Deployment Rate. Another important fac-
tor that influences the abuse rate of TLDs is the security
effort of the registries. As we have no direct observations of
these efforts we instead actively measure the DNS Security
Extensions (DNSSEC) protocol [43], [44] deployment rate.
Although DNSSEC has potential for abuse in Distributed
Denial of Service attacks, it undoubtedly strengthens DNS
by preventing a number of attacks such as cache poisoning
[45].

It is often very challenging to secure hundreds of thou-
sands or even millions of existing domains in the envi-
ronment composed of multiple stakeholders. To increase
the security of .nl domains, SIDN for example, actively
encourages and incentivises registrars of domains to deploy
DNSSEC by reducing the registration price. For that reason,
we use the DNSSEC deployment rate as a proxy for the
security effort of the TLD registries.

To actively measure the current deployment of DNSSEC
per TLDs, we use zonemaster collector implemented by
Patric Wallström [46]. We further sample approximately
2.4 million domains from DNSDB in May 2016 using the
following procedure. To determine a representative sample
size for each TLD, we use binomial approximation [47].
We first set a narrow total width of confidence interval to
W = 0.01 with confidence level CL = 95%. Based on
our preliminary measurements, we approximate P defined
as an expected proportion of DNSSEC-signed domains to
all registered domains per TLD. Sample size s is calculated
using the following formula: s = (Z2∗P (1−P ))

(0.5∗W )2 , where Z is
the critical value of the normal distribution (for CL = 95%
critical value is equal to 1.96). For example, assuming that
for a given TLD the expected DNSSEC deployment rate is
5%, the sample size is equal to 7,299.

To assess the accuracy of our active measurements, we
compare the DNSSEC deployment rates of our measure-
ments with the actual ground-truth data obtained from the
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Figure 4: Distribution of differences of the measured
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Figure 5: Differences of the measured DNSSEC deployment
rates with the actual deployment rates (in %) based on
available zone files as a function of TLD sizes.

zone files of 590 TLDs available to us at the time of the
measurements. Figure 4 shows the distribution of differences
(in %) between the ground-truth data and the measured de-
ployment rates. Although the results indicate a high accuracy
of our method, we observe a considerable number of TLDs
for which the actual deployment rate does not match with
the measured one. We further investigate the differences as
a function of the number of 2nd–level domains in a zone
file (see Figure 5). Note that our measurements are very
reliable for larger TLDs whereas smaller ones are subject to
considerable measurement error. To overcome this limitation
we use the actual DNSSEC deployment rates when ground-
truth data is available and only otherwise use the measured
deployment rates in our statistical analyses.

For example, Figure 6 shows the top 20 ccTLDs with
the highest DNSSEC deployment rates. Although the .nl
ccTLD has the largest absolute number of domains with the
DNSSEC validation support, in relative terms .no and .se
ccTLDs have higher deployment. Notably, the large gTLDs
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Figure 6: Top 20 ccTLDs with the highest DNSSEC deploy-
ment rates.

such as .com, .net or .org have less than 1% DNSSEC-
signed domains in registry.

3.2.9. ICT Development Index. The International
Telecommunication Union (ITU) provides country-level
quantitative indicators that show the development in
information and communication technology (ICT) of
different countries [48]. Using the delegation details of
the top-level domains extracted from IANA root zone
database we map each TLD to ICT development index of
the country where the TLD operates.

4. Prevalence of Blacklisted Domains by TLD

In this section, we first present the three security metrics
that provide insight into the distribution of badness across
TLDs and we describe the intuition behind their selection.

4.1. Occurrence Security Metrics

First, we propose to analyze the occurrence of
unique domains. Although, it is the most intuitive
metric, it also has its limitations. It does not give
an indication of the ‘amount of badness’ coming
from a given domain name. For example, modern
botnets extensively adopt domain generation algorithms
(DGA) to create a large number of domain names and
then use their subset for rendezvous points between
compromised machines and command-and-control servers
(e.g. 123.malicious.com, 234.malicious.com,
etc.) [49]. Moreover, a single maliciously registered
domain name may be used in several phishing campaigns
against, for example, different banks [30]. In terms of
the number of unique domains, the dynamic reputation
system will assign the same reputation score to both
TLD registries. To overcome this limitation, we propose
a second, complementary metric: the number of unique



FQDNs. We encounter, however, some limitations of
the second approach as well. A single FQDN of a
compromised website could be used, for example,
to distribute malware configuration and binary files
or serve as dropzones, etc. using distinctive paths
(e.g. malicious.com/wp-content/file.php,
malicious.com/wp-content/gate.php, etc.) [50].
This is why we propose a third, complementary abuse
occurrence metric: unique blacklisted URLs aggregated by
TLDs. It reveals information that is not captured by other
two metrics, namely the ‘amount of badness’ associated
with unique FQDN. It stems from our previous work with
the Dutch national police. Our analysis of child abuse
URLs have revealed that some FQDNs are used more
extensively to distribute malicious material. In fact, one
FQDN can be used to share one abusive photo whereas
another to distribute tens or hundreds of photos. The
manual analysis of other types of abuse such as malware
or phishing confirms this trend.

Reliable reputation metrics have to account for a com-
monly observed trend that larger market players such as
broadband or hosting providers experience a larger amount
of abuse [12]. For that reason, each of the proposed metrics
are normalized by the size of the corresponding TLDs which
we carefully measure in Section 3.2.1.

In the rest of this section we provide the reader with the
qualitative and quantitative analysis of phishing and malware
data for TLD reputations and make an attempt to distil
a number driving factors for both large and small abuse
concentrations.

4.1.1. Phishing TLD Reputation. Figures 7a and 7d show
the number of unique phishing domains blacklisted in 2014
and 2015 per TLDs as a function of their sizes. Due to the
disproportionate nature of TLD market share, we present
the results using a logarithmic scale. It is important to
note that we also use the log-transformed phishing domain
counts in our statistical analysis. The drawback is that a
logarithmic scale results in an undefined counts for those
TLDs which have zero blacklisted domains. To overcome
this limitation, we assign a small positive value close to zero
to their phishing domain counts to be able to include such
TLDs in our statistical analysis. As expected, the results
indicate a moderately strong relationship between the size
of a TLD and the number of blacklisted domains (r2 = 0.68
in 2014 and r2 = 0.5 in 2015). This is because in general
the majority of blacklisted domains are hacked rather than
registered by miscreants [51]. In fact, the number of domains
in a TLD registry can be seen as an approximation of the
attack ‘surface size’ for cybercriminals.

There is also a clear difference between ccTLDs (marked
in blue) and gTLDs (marked in red). Notice that large
gTLDs such as .com, .net or .org (see e.g. Figure 7a
and Table 4) in absolute terms are of special interest to mis-
creants in comparison to ‘new’ gTLDs (those that have been
delegated by ICANN in late 2013 and early 2014 [52]). We
find a relatively small number of observed phishing attacks
using the new gTLD domains in 2014. We hypothesize that

these were not yet included in a criminal business model.
This may be due to the higher prices of individual registra-
tions [53] which directly influence malicious registrations
rather than compromise frequency. Some new gTLDs might
also be less attractive among miscreants because phishing
domains with suffixes such as .bike, .tips or .photos
may look more suspicious and unlikely to be legitimate bank
or luxury brand websites. On the other hand, access to zone
files of new gTLDs is open under a special agreement with
ICANN [28]; this could be a powerful tool to search for
vulnerable domains to compromize.

There are some TLDs, such as .ml or .xyz, that
appear to deviate from other TLDs. By manual inspection
of blacklisted .ml domains, we find a variety of seemingly
unrelated domain names, presumably maliciously registered;
.ml, .ga, .cf and .gq ccTLDs offer free domain reg-
istrations by Freenom [40]. Note that according to Aaron
and Rasmussen, Freenom declined to provide the number
of domain registrations for .cf, .ml and .ga TLDs for
the APWG study in 2014 [51]; instead, the authors used
DomainTools to estimate TLD size (which we compare with
our own DNSDB estimations in Section 3.2.1).

Figures 7b-c and 7e-f show the two complementary
occurrence security metrics: the number of unique fully-
qualified phishing domains and URLs per TLDs in 2014 and
2015 (see also overall occurrence security metric scores in
Tables 4, 5 and 6). These distributions are more dispersed
than those of just domains (r2 = 0.6 and r2 = 0.45 in
2014 and r2 = 0.47 and r2 = 0.44 in 2015, respectively)
and may give a better intuition on the ‘amount of badness’
from a TLD.

By manual inspection of FQDNs we find 17 2nd–level
.ru domains presumably maliciously registered and 32,596
corresponding FQDNs (3rd–level domains) involved in the
same phishing campaign in 2014. Similarly, we find three
2nd–level domains: {incomparable, phenomenal,
taipei}.country and 8,996 corresponding 3rd–level
domains used in phishing campaigns in March and July
2015. Thus the .ru and .country TLDs stand out in
the FQDN reputation metric seen in Figures 7b and 7e,
respectively.

We also manually analyze domain abuse hosted on
other ccTLDs such as .pn, .nf, .vu or .vc as they
deviate markedly from the other TLDs. Here, we find that
most domain abuse comes from certain legitimate 2nd–level
domains acquired by providers that offer free registration
(and often free hosting) with selected domain extensions.
For example, we find that the great majority of abused .nf
FQDNs are hosted on co.nf, blacklisted .vc FQDNs are
hosted on zz.vc, whereas .vu on de.vu and co.vu
2nd–level domains. As indicated in one of the free hosting
provider’s website such extension and thus a registered
FQDN looks like a real paid domain name, e.g. the domain
of United Kingdom (co.uk) or Austria (co.at). More-
over, while generally TLD registries apply certain measures
to protect brands and prevent malicious registrations, it
seems that hosting providers offering free domains do not.
We observe, for example, maliciously registered domains
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Figure 7: Phishing domains, FQDNs and URLs per gTLD and ccTLDs as a function of TLD size based on the Anti-Phishing
Working Group feed from 2014 and 2015.

such as faacebook.de.vu, bankofamerica.co.vu
or wells-fargo.co.nf. More importantly, we do not
observe any indicators of improved practices over the two-
year period of our study.

Through manual inspection of the .com domains we
find, for example, 44,856 unique *.s3.amazonaws.com
FQDNs that correspond to an online file storage web service
offered by Amazon Web Services (AWS). This indicates that
miscreants increasingly use cloud services in their malicious
activity. As the majority of cloud services companies use the
.com prefix, the .com TLD will presumably always be
an outlier. Nevertheless, an increased number of reported
FQDNs of certain services does not always mean that the
companies do not properly deal with security incidents.
Rather, since the eCrimeX APWG platform is used by
known parties and registries to submit and act quickly to
shutdown/suspend the phishing domains, the most active
entities submitting phishing domains might look worse in
terms of a number of reported FQDNs. A very limited
number of, for example, *.s3.amazonaws.com FQDNs
found in StopBadware DSP and in Phishtank [54] datasets
seems to support this hypothesis.

We further find 6 unique blacklisted domains on the
.tt ccTLD for the Republic of Trinidad and Tobago.
Notice, that the number of corresponding FQDNs and
URLs is significantly higher. First, we find that the content

stored on ge.tt file sharing and publishing platform is
being extensively used for malicious purposes. We count
4,565 unique *.open.ge.tt FQDNs and 3,373 unique
ge.tt/* URLs. Moreover, we find 1,052 reported Drop-
box short URLs under the db.tt domain. In fact, Dropbox
added support for linking to particular files or folders using
short URLs that other people are able to access directly
from their browsers. We also encounter 88 unique URLs
created with the mf.tt service to shorten any URLs. This
is somehow to be expected that miscreants use file storage
and URL shortening services.

The application most extensively used for malicious
purposes within the .tt TLD is the “If This Then That”
(IFTTT) service [55]. It combines more than 150 services
like Facebook, Gmail, Dropbox to work together and to
create chains of simple conditional actions, called “recipes”.
A simple example recipe might consist of sending an e-mail
message if the user is tagged by someone on Facebook.
We encounter 17,787 unique ift.tt URLs in the APWG
dataset which shows the popularity of this service among
miscreants.

For completeness, the toxicity of other TLDs is also
heavily affected by popular URL shortening services,
namely t.co operated by Twitter (377,726), x.co by Go-
Daddy (103,255), ow.ly (1,213,302), bit.ly (374,283),
adf.ly (93,994) and goo.gl (2,677,239) by Google.



4.1.2. Malware TLD Reputation. We now study the mal-
ware activity reported by the StopBadware DSP. We refer
the reader to Tables 7, 9 and 8 for overall occurrence
security metric scores. As before, we observe a moderately
strong relationship between the TLD size and the number
of blacklisted domains (r2 = 0.68 in 2014, r2 = 0.53 in
2015), FQDNs (r2 = 0.63 in 2014, r2 = 0.52 in 2015) and
URLs (r2 = 0.6 in 2014, r2 = 0.52 in 2015) . We again
observe a clear difference between ccTLDs and new gTLDs
which have less attacker interest.

We notice very different results for TLDs offered by
Freenom. Namely, the .tk TLD experiences very little
malicious registrations, whereas the .ml and .ga TLDs
experience many more relative to their size. In fact, we
observe a similar absolute number of blacklisted malware
domains for all the three TLDs even though the sizes of
the former two are few hundred times smaller than the
.tk TLD size. Notice that Freenom offers some accredited
interveners, such as Facebook, the Anti-Phishing Alliance of
China or Internet Identity the ability to suspend malicious
domains in the registry. According to Aaron and Rasmussen,
at the time Freenom did not provide a similar tool to
alleviate the problem of blacklisted domains registered on
.tk on the other TLDs, i.e. .ml, .ga and .cf [51]. This
could explain smaller occurrence scores for .tk domains.
However, a chief executive officer of Freenom Joost Zuur-
bier shared with us that the accredited interveners have the
ability to suspend domains of all the TLDs operated by their
company. Thus, another possible explanation for different
relative abuse counts could be that the .tk TLD contains
many more expired and parked domains (by Freenom itself)
than the other four TLDs. This leads to an overestimation
of its size, leading to lower metrics on the concentration of
abuse. To reliably explain the variance in abuse data between
certain TLDs, we need to consider other TLD properties
than just size such as domain registration price or other
TLD-specific registration policies.

By manual inspection of the .edu TLD (one of few
gTLD outliers, see Table 8), we do not find any significant
difference in the amount of malware domains in different
educational institutes; this contrasts with the APWG feed
where 65 out of 112 bad .edu domains in 2014 come from
the Harvard University Library (*.hul.harvard.edu).

Finally, we observe a relatively large volume of *.tt
FQDNs and URLs corresponding to only 8 unique black-
listed domains in 2014. Most of them are subdomains of the
ge.tt domain—a file sharing platform, as in the APWG
feed. More specifically, we observe 1,231 *.open.ge.tt
FQDNs, 1,234 *.blob#.ge.tt FQDNs, and 1,098
unique ge.tt/* URLs out of all 3,433 unique FQDNs.
(Note that * refers to a string, whereas # represents a digit).
We explore the common part of these domains blacklisted
by APWG and StopBadware, and do not find any common
domain.

5. Persistence of Phishing Domains in TLDs

In this section, we present two security metrics that
reflect how fast the TLD intermediaries respond once a
phishing domain under their TLD is abused.

5.1. Uptime Security Metrics

Another important health indicator of a TLD is the
persistence of domain abuse or uptime. It indicates how fast
the responsible intermediaries respond once the domain is
abused or, in other words, how long a malicious domain
stays online before the ‘take-down’ procedure, i.e. domain
suspension or quarantine. The uptime of malicious domains
is used in other security research as a standard metric for
studying the lifetime of individual domain names in relation
to various attack types and affected hosting providers [35],
[56]–[58].

In this paper, we study various security metrics related to
the uptime of phishing domains per TLD. Our first metric,
proposes the use of the mean uptime of unique domains per
TLD. While it is the most intuitive metric, it comes with its
limitation, that is, it may be skewed by long-lived malicious
domains. To overcome this limitation, we further consider
the use of median uptime of abused domains. Regardless
of the specific type of abuse, we expect the median to be
considerably less than the mean uptime.

TABLE 2: Descriptive statistics of uptimes (in hours) for
selected TLDs based on phishing websites reported by
Cyscon.

TLD Min Mean Median Max SD SE
BR 0 199.81 24.09 4, 586.27 506.75 6.36
CL 0 174.76 27.47 4, 119.50 448.41 10
COM 0 182.96 24 4, 858.38 494.60 1.50
CZ 0 164.60 0 2, 859.14 493.27 42.61
ML 0 165.32 29.50 3, 283.28 408.84 21.98
NET 0 181.83 24 4, 635.54 515.99 5.87
NL 0 196.08 0 3, 997.50 603.15 30.35
PL 0 199.94 0.61 4, 714.04 595.17 15.15
TK 0 281.42 37.37 3, 866.72 693.96 36.42
TR 0 58.43 0 4, 679.64 343.39 8.38
FJ 3, 418 3, 418 3, 418 3, 418 − −
RW 0 2, 272 2, 969 3, 848 2, 016 1, 164
DANCE 2, 376 2, 376 2, 376 2, 376 − −

5.2. Uptime of TLDs

To calculate uptime, we use the phishing dataset pro-
vided to us by Cyscon security company as explained in
Section 3.1.2. We define uptime of a phishing website as
the number of days between the first and last time the
website is observed online as reported by Cyscon. Table 2
contains descriptive statistics of the uptime of the phishing
websites that had been taken down by the end of our
measurement period in a set of selected TLDs (see Table
10 for top 20 TLDs with the highest median uptime). As
expected, the median uptime is often much less than the
mean uptime. We find that, for example, phishing websites
of the .pl and .nl TLDs remained available on average
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Figure 8: Survival analysis of phishing websites of ten
selected TLDs based on data provided by Cyscon.

for more than 199 and 196 hours respectively, with a very
small median or median equal to zero. It means that the
majority of blacklisted .nl websites were cleaned as soon
as the responsible providers were notified, even before the
subsequent measurement. Notably, the mean and median
uptime of certain TLDs are skewed by single abuse in-
cidents, especially those TLDs with the highest uptimes
(see Table 2 and 10). For example, through manual in-
spection of the only blacklisted .fj domain, we find that
between June and November 2015, it was used in two
phishing campaigns: one against Yahoo and another one
tagged as “generic auto”. One of the blacklisted URLs
(wp-includes/js/crop/mene/Indexz.html) in-
dicates that the miscreant might have exploited a vulnerable
WordPress installation (or one of its plugins) rather that
having registered a domain for malicious purposes.

In addition, a number of phishing websites may remain
online when our measurement period is finished, which
leaves their uptime unknown. In order to correctly account
for such instances, we use Survival Analysis which allows
for taking such artifacts into account through right-censoring
of the data points. Let survival function S(t) be the prob-
ability that a phishing website is online at time t during
the measurement period. S(t) is calculated using a standard
Kaplan-Meier estimator [59].

Figure 8 displays the survival curves for phishing web-
sites of 10 selected TLDs. The shapes of the curves differ
considerably for the selected TLDs, which further indicate
their differences in taking down phishing websites. The two
most deviant TLDs are .tk and .ml, which are far from
others in terms of the rate with which the phishing websites
are taken down: after approximately 70 days 45% and 35%
of their phishing websites remain online, respectively.

5.3. Occurrence Versus Persistance

Figure 9 compares the median uptime of phishing web-
sites reported by Cyscon between June 2015 and January
2016 and the number of phishing domains blacklisted by
APWG in 2015. Similar to before, we assign a small pos-
itive value close to zero (0.01), to TLDs with no domains
blacklisted by APWG. These values are transformed to

a negative value on the logaritmic scale. As the figure
indicates, there is a weak relationship (Pearson r = 0.27)
between the phishing occurrence and uptime metrics which
was expected as each captures a different aspect of security
practices (i.e. proactive vs reactive efforts). While providers
within certain TLD ecosystems are more reactive to abuse
notifications, they might not necessarily invest resources in
proactive security measures such as vulnerability and patch
management. Clearly, some TLD ecosystems experience
large amounts of abuse but also manage to quickly take
their malicious domains down (upper left region of the
plot). Interestingly, the results seem to suggest that there
are no TLDs that “perform” consistently bad: experience
large amount of abuse and be slow in taking them down
(upper right region of the plot is empty).
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Figure 9: Comparison of phishing occurrence metric based
on domains reported by APWG and median uptime metric
based on phishing websites reported by Cyscon.

6. Regression Analysis of Abuse in TLDs

In Section 4, we demonstrated that domain abuse counts
relate to the size of TLDs with relatively high Pearson r
value. However, size estimates come with their own mea-
surement errors and biases (i.e. under/over counts of domain
names registered within a TLD). In addition to the size
of a TLD, there might exist other properties that drive the
abuse counts. Using a regression model, one can examine
the amount of variance that those properties can collectively
explain, from the total observed variance in the abuse counts.

Previous research has proposed an approach to study
the variation of abuse across the population of hosting
providers, using regression models that carefully decompose
different drivers of variation in abuse counts, such as size,
pricing, time-in-business and the amount of WordPress sites
on phishing abuse [60]. Here, we use a similar statistical
regression approach, to analyze how the different properties
of TLD intermediaries relate to the amount of abuse in their
networks.



We model the number of abused domains as a dependent
variable using Negative Binomial Generalized Linear Model
(GLM) regression with a Log link function. The specific
choice of model is due to the dependent variable constituting
a ‘count’ and due to the interdependence of events and
non-equal mean and variance of the dependent variable.
Our regression model is built using the APWG dataset
from 2015, as explained in Section 3.1.1. We define our
dependent variable Yi as the number of blacklisted domains
in APWG for i = 1, . . . , n, with n being the total number
of TLDs where Yi follows a Negative Binomial distribution.
Our independent variables in the model are TLD properties
introduced in Section 3.2. The selected variables are the
‘Number of unique domains’, ‘Number of unique domains
on shared IPs’, ‘Free’, ‘Domain popularity index’, ‘URL
shortner popularity index’, ‘Age’, ‘DNSSEC deployment
rate’, ‘Restricted registration’ and ‘ICT development index’.
In order to prevent dependence in the residuals due to
presence of ‘ICT development index’ as a country-level
predictor in the model, we add the ‘country’ variable as
a fixed-effect, by fitting a separate dummy variable as a
predictor for each class of the variable.

Our Negative Binomial GLM model with the country
fixed-effects is defined as follows:

ln(Yi) = βixi + . . .+ δi, (1)

where i refers to different measurements within each
TLD, βi are the estimated coefficients for xi, xi are the
independent variables collected for TLDs and δi is the
“fixed-effect” parameter [61].

Table 3 shows the summary of the regression results
with the estimated coefficients and their significance levels
produced by the regression analysis using this model. One
should note that the final model in Table 3 is chosen from a
stepwise addition of the variables into a baseline model with
a single explanatory variable. Table 3 illustrates the model
with the maximum Log likelihood, θ values and minimum
Akaike information criterion (AIC) value.

The results indicate that in addition to a TLD size,
the other independent variables contribute significantly to
the variation in the number of phishing domains, as the
dependent variable. The size of the coefficients display the
extent to which they contribute.

As expected, the ‘Number of unique domains’ variable
(TLD size) explains a significant part of the variance in
phishing counts. Holding the other independent variables
constant, if we increase the ‘Number of unique domains’
by one unit (equivalent to multiplying the size of a TLD by
10 since it is in the log10 scale), the number of phishing
domains is multiplied by e(1.416) = 4.120. The ‘Number of
unique domains on shared IPs’ however, plays a very week
significant role in explaining the variance in phishing counts
and can be interpret in a similar fashion to the ‘Number of
unique domains’.

As hypothesized, we see a very strong significant pos-
itive relation between the price of domain registration and
phishing counts in the model. As defined in Section 3.2.5,

TABLE 3: Negative Binomial GLM regression models with
‘Loge’ link function for number of phishing domains per
TLD.

Response Variable:
Number of phishing domains in APWG

Number of unique domains [log scale] 1.416∗∗∗
(0.068)

Number of unique domains on shared IPs 0.00000∗
(0.000)

Free 5.804∗∗∗
(1.150)

Domain popularity index −0.0001∗∗
(0.000)

URL shortner popularity index 0.367∗∗
(0.141)

Age 0.120∗∗∗
(0.009)

DNSSEC deployment rate −2.900∗∗∗
(0.508)

Restricted registration −0.900∗∗∗
(0.173)

ICT development index 0.027
(0.361)

Constant −2.507
(2.096)

Observations 891
Log Likelihood −2,061.0300
θ 0.768∗∗∗ (0.058)
Akaike Inf. Crit. 4,412.059

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Standard errors in brackets

the variable ‘Free’ is equal to 1 if the TLD offers free
domain registrations and 0 if not. Hence, the results indicate
that free registration within TLDs multiplies the number of
phishing domains by e(5.804) = 331.623, while holding all
other variables constant. While the number of domains in
the registry is related to the number of hacked websites and
indicates the ‘attack surface’ for cybercriminals, free domain
registration is another means by which a miscreant can gain
access to a domain.

The variables ‘Domain popularity index’ and ‘URL
shortner popularity index’ also have significant effects.
While the resulting coefficient for the ‘Domain popularity
index’ suggests that more popular TLDs are attacked less,
the ‘URL shortner popularity index’ coefficient indicates
that more popular URL shortners are used more in phishing
attacks, which is inline with our own observation explained
earlier in this paper. Naturally, we would expect a much
stronger correlation between the ‘URL shortner popularity
index’ and an alternative abuse occurrence metric such as
the number of blacklisted URLs aggregated per TLD.

In addition, the ‘Age’ of a TLD plays a significant
positive role in explaining the variance of phishing domains
- more precisely - the older the TLD, the more its domains
are used for phishing. As mentioned before, one possible
explanation could be that it is more difficult for ‘older’ TLDs
such as the legacy .com or .net gTLDs to deploy security



measures at scale. The results confirm our findings indi-
cating that the new gTLDs contain less malicious domain
names (see Figure 7).

Moreover, we see a negative significant relation between
the variable ‘DNSSEC deployment rate’ and the count of
phishing domains. Note that we use this variable as a proxy
for the security efforts of TLD registries as it does not
prevent phishing attacks.

As expected, the variable ‘Restricted registration’ shows
that TLDs with restricted registration policy such as
.museum, .pharmacy or .nyc contain less phishing do-
mains. On one hand, restricted registration policies require
more effort for a cybercriminal to register a domain name
for malicious purposes. On the other hand, domains of new
brand gTLDs, which are not available for registration, are
also much more likely to be secure and often remain unused
or redirect to a different domain name [62].

Finally, the ‘ICT development index’ does not play a
significant role in explaining phishing abuse counts, after
fixing the country variable and controlling for country vari-
ations.

7. Conclusion

In this paper, we propose security metrics to measure
and benchmark entire TLDs against their market using
representative malware and phishing datasets. We explicitly
distinguish the metrics from the idea of measuring security
performance because a TLD is not a single organization but
constitutes an entire ‘domain name ecosystem’ of different
types of intermediaries. Registrars add domains to the list
kept by the registry while hosting companies provide web
servers for domains.

We devise three different measures of ‘badness’ per TLD
(domain, FQDN and URL) which reflect attackers’ profit-
maximizing behavior. Attackers abuse free legal services,
affecting the reputations of such associated services. We
find bad URLs using third party domains on the .com TLD
such as Dropbox’s dropbox.com and the .tt TLD such
as If This Then That’s domain if.tt. We also find that
the attackers abuse free domain registration provided by
Freenom such as on the .tk and .ml TLDs.

Our findings suggest that new generic gTLDs such as
.new and .pharmacy have disproportionately less at-
tacker interest. This may be due to the higher prices of
individual registrations at the beginning of the life cycle
of the most of new gTLDs (i.e. during the “landrush”
period) when registrants can get any domain name for a
price premium; or due to a number of safeguards that were
introduced by ICANN to mitigate rates of malicious, abusive
and criminal activity in new gTLDs [63]. This contrasts
with existing TLDs such as legacy .com and .net gTLDs
which have disproportionately more attacker interest.

Another important indicator of TLD security we have
looked into is the persistence of domain abuse or uptime.
We find that in general the median is much less than the
mean uptime as the latter is skewed by long-lived malicious
domains. We have also analyzed how the uptime of TLDs

relates to the amount of abuse in their networks, with the
assumption that both indicate the security measures taken
by TLDs. Notably, we found no correlation between the
occurrence of abuse and median uptime metric suggesting
that the majority of intermediaries act fast once they are
notified about domain abuse but are less proactive to prevent
them.

Our approach, however, comes with certain limitations
which are planned to be improved in our future work. Our
TLD metrics conflate maliciously registered domains and
hacked websites. Distinguishing between those two differ-
ent categories is important because they require different
mitigation actions by different intermediaries. For example,
hosting providers have a larger role to play in cleaning up
content of compromised websites whereas domain registrars
are more responsible for suspending maliciously registered
domains.

Our paper also tries to answer the following question:
to which extent domain abuse levels of TLDs are driven
by TLD related properties? As expected, the number of
unique domains or, in other words, the TLD size explains a
significant part of the variance in phishing counts. In other
words, the more domains in the registry, the bigger the
‘attack surface’ for cybercriminals. Moreover, we observe
a very strong significant positive correlation between the
price of domain registration and phishing counts. Last but
not least, we observe a negative significant relation between
the DNSSEC deployment rate and the count of phishing
domains. As DNSSEC does not prevent phishing attacks,
we interpret it as a proxy for the security efforts of the
TLD registries.

We identify a number of recommendations for TLD
registries. We recommend to sustain the effort to pro-
actively acquire new feeds of phishing, malware, spam, and
other sources of maliciously registered and compromised
domains. Registries should send real-time or periodical noti-
fications about abused domains to their clients, i.e. registrars.
TLD registries should consider introducing positive and/or
negative incentive structures for market players. For exam-
ple, domain registrars/hosting providers running outdated
versions of website software could be encouraged to update
it before a domain renewal.

Finally, to facilitate monitoring of the three proposed
occurrence security metrics indicating the concentration of
‘badness’ per TLD in comparison to its peers we maintain
the website: http://remedi3s-tld.sidnlabs.nl.
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Appendix

TABLE 4: Occurrence Security Metrics: Top 10 large
gTLDs with the highest relative concentration of unique
phishing domains, FQDNs and URLs.

Large gTLD, APWG
2014 2015

TLD # Domains Score TLD # Domains Score
COM 48159 41 INFO 5520 106
ORG 3954 38 COM 109381 88
INFO 1999 37 NET 11406 72
NET 5503 35 ORG 7748 70
BIZ 632 25 BIZ 1410 59

TLD # FQDN Score TLD # FQDN Score
ORG 111789 1065 COM 1482304 1200
COM 756068 637 NET 112556 712
NET 18667 120 INFO 18487 356
INFO 2826 52 BIZ 5075 214
BIZ 797 31 ORG 14414 131

TLD # URL Score TLD # URL Score
COM 4499882 3789 COM 19140097 15499
ORG 350741 3342 NET 636241 4025
NET 117029 752 ORG 279650 2548
BIZ 15104 589 INFO 76538 1476
INFO 6902 127 BIZ 16496 697

TABLE 5: Occurrence Security Metrics: Top 10 ccTLDs
with the highest relative concentration of unique phishing
domains, FQDNs and URLs.

ccTLD, APWG
2014 2015

TLD # Dom Score TLD # Dom Score
PN 12 1993 KP 1 4347
NE 3 928 ML 5158 2946
TL 19 863 NE 8 2476
VU 11 724 PN 14 2325
ML 585 680 JE 94 1926
SD 12 576 GP 38 1791
TG 3 562 KI 6 1612
TO 82 522 CF 3727 1539
CI 18 514 TL 30 1480
KE 87 500 GQ 1918 1325

TLD # FQDN Score TLD # FQDN Score
TT 4590 153975 TT 5626 140579
GG 1845 35480 GG 1976 38368
NF 198 18574 TF 967 37049
PN 105 17441 PN 185 30730
GA 14999 15305 VU 436 28703
VU 106 6978 JE 1019 20881
VC 308 3311 NF 204 19136
TF 47 1958 IO 26889 17751
SH 104 1637 MU 601 8577
TL 33 1500 TO 1312 8067

TLD # URL Score TLD # URL Score
GL 2672798 46891192 GD 2032729 65068149
LY 1614324 12417876 GL 3290493 64494178
MP 8197 1600976 LY 2160713 18195477
TT 26556 890841 TF 152721 5851379
GD 16292 581857 MP 28079 5484179
HT 5000 227272 GY 90928 2796924
ST 24681 226120 TT 109272 2730434
GG 5789 111326 TO 229928 1413810
SH 6543 103039 JE 58327 1195225
GY 1162 35742 GS 69916 982932



TABLE 6: Occurrence Security Metrics: Top 10 smaller
gTLDs with the highest relative concentration of unique
phishing domains, FQDNs and URLs.

Smaller gTLDs, APWG
2014 2015

TLD # Dom Score TLD # Dom Score
POST 1 5263 HERE 10 500000
EDU 41 540 ANDROID 4 400000
GOV 13 243 ZIP 4 400000
COOP 5 63 PLAY 2 200000
LINK 31 58 SONY 5 166666
CODES 2 52 NEW 3 150000
PRO 53 41 NICO 1 100000
HOST 1 40 BOO 1 50000
CAT 29 35 DAD 1 50000
XXX 35 34 EAT 1 50000

TLD # FQDN Score TLD # FQDN Score
POST 1 5263 ANDROID 8 800000
EDU 111 1462 HERE 12 600000
MOBI 3361 369 ZIP 4 400000
GOV 13 243 PLAY 2 200000
HOST 4 161 SONY 5 166666
COOP 5 63 NEW 3 150000
LINK 33 62 COUNTRY 8997 125955
PRO 72 56 NICO 1 100000
CODES 2 52 BOO 1 50000
CAT 42 51 DAD 1 50000

TLD # URL Score TLD # URL Score
POST 1 5263 ANDROID 8 800000
EDU 293 3860 HERE 12 600000
MOBI 5287 580 ZIP 4 400000
HOST 9 363 PLAY 2 200000
GOV 14 261 SONY 5 166666
COOP 20 253 NEW 3 150000
LINK 118 222 COUNTRY 8997 125955
PHOTOS 34 198 NICO 1 100000
XXX 158 154 BOO 1 50000
CLUB 209 130 DAD 1 50000

TABLE 7: Occurrence Security Metrics: Top 10 large
ccTLDs with the highest relative concentration of unique
malware domains, FQDNs and URLs.

ccTLD, Stopbadware
2014 2015

TLD # Dom Score TLD # Dom Score
VU 725 47728 VU 3703 243778
PN 23 3820 MV 14 1564
GA 3291 3358 PN 9 1495
TF 61 2541 ML 2535 1448
CU 31 2073 TO 218 1340
ML 1659 1929 NF 13 1219
ZA 1971 1925 TH 711 1138
NF 19 1782 CF 2562 1058
MV 15 1675 TF 27 1034
TH 924 1421 LS 8 998

TLD # FQDN Score TLD # FQDN Score
VU 918 60434 VU 3712 244371
TT 1581 53035 TT 2781 69490
NR 123 24600 NR 113 22600
PN 47 7807 GG 414 8038
GA 4445 4535 PN 22 3654
SU 4761 4060 RU 123533 2458
NU 8870 3805 TO 332 2041
ML 3252 3781 NF 21 1969
NF 39 3658 TL 39 1924
KI 13 3494 TH 1055 1689

ccTLD, Stopbadware
2014 2015

TLD # URL Score TLD # URL Score
TT 2522 84602 VU 6466 425674
VU 1060 69782 TL 2546 125666
HT 787 35772 TT 4123 103023
NR 170 34000 GG 3081 59825
GL 641 11245 ID 65497 46964
PN 58 9634 EG 3393 36099
TL 198 9000 NF 350 32833
LY 1055 8115 TR 121391 32647
MZ 305 7093 RU 1314685 26167
TH 4199 6460 GE 6783 25922

TABLE 8: Occurrence Security Metrics: Top 10 smaller
gTLDs with the highest relative concentration of unique
malware domains, FQDNs and URLs.

Smaller gTLDs, Stopbadware
2014 2015

TLD # Dom Score TLD # Dom Score
INT 7 3589 ADS 1 100000
EDU 270 3557 EDU 223 2634
GOV 63 1178 WIN 9909 1774
MUSEUM 3 696 SITE 1387 1732
COOP 32 406 INT 2 1025
CAT 275 338 BID 804 834
PRO 307 241 LOAN 540 498
AERO 22 232 WORK 445 480
ASIA 656 206 GOV 21 380
TRAVEL 35 179 RACING 80 295

TLD # FQDN Score TLD # FQDN Score
EDU 392 5164 ADS 1 100000
INT 9 4615 EDU 322 3804
MUSEUM 11 2552 ASIA 6728 2978
GOV 73 1365 COUNTRY 181 2533
COOP 35 444 WIN 9937 1779
NAME 778 405 SITE 1391 1737
CAT 286 352 INT 2 1025
ASIA 949 299 BID 805 835
PRO 343 269 WORK 721 778
AERO 22 232 MUSEUM 8 662

TLD # URL Score TLD # URL Score
MUSEUM 54 12529 ADS 4 400000
EDU 907 11949 MUSEUM 713 59072
INT 13 6666 EDU 1679 19839
XXX 4276 4176 NINJA 9958 19175
GOV 117 2188 ASIA 28050 12418
TRAVEL 152 780 WEBSITE 11420 9522
CAT 560 689 ROCKS 4852 8029
COOP 47 596 LOL 2187 6633
NAME 1113 579 RED 3649 6164
PRO 690 542 WORK 5622 6066



TABLE 9: Occurrence Security Metrics: Top 10 large
gTLDs with the highest relative concentration of unique
malware domains, FQDNs and URLs.

Large gTLD, Stopbadware
2014 2015

TLD # Domains Score TLD # Domains Score
COM 320718 270 COM 358118 290
ORG 26080 248 ORG 26914 245
NET 36170 232 NET 37628 238
BIZ 5391 210 INFO 11520 222
INFO 10787 198 BIZ 4885 206

TLD # FQDN Score TLD # FQDN Score
COM 598861 504 COM 470505 381
NET 62377 401 ORG 35475 323
ORG 34759 331 NET 49081 310
BIZ 8089 315 BIZ 7030 297
INFO 12209 224 INFO 12765 246

TLD # URL Score TLD # URL Score
COM 1178453 992 BIZ 82373 3483
NET 138956 893 COM 4077811 3302
ORG 92629 882 INFO 163014 3145
INFO 36132 665 ORG 302093 2752
BIZ 13606 531 NET 423201 2677

TABLE 10: Uptime Security Metrics: Top 20 TLDs with the highest median uptime (in hours)
based on phishing websites reported by Cyscon between June 2015 and January 2016.

TLD Min Mean Median Max SD SE
FJ 3, 418.18 3, 418.18 3, 418.18 3, 418.18 − −
MP 0 2, 555.56 3, 383.15 4, 505.47 1, 817.38 605.79
RW 0 2, 272.63 2, 969.54 3, 848.35 2, 016.61 1, 164.29
BAYERN 2, 953.66 2, 953.66 2, 953.66 2, 953.66 − −
DANCE 2, 376.27 2, 376.27 2, 376.27 2, 376.27 − −
TC 0 1, 919.85 2, 347.26 3, 412.28 1, 745.83 1, 007.96
CX 0 1, 643.56 1, 643.56 3, 287.12 2, 324.35 1, 643.56
WF 0 1, 407.89 1, 482.41 3, 345.55 1, 279.74 522.45
LIMO 461.07 1, 471.04 1, 471.04 2, 481.01 1, 428.31 1, 009.97
PHOTOGRAPHY 0 1, 449.40 1, 449.40 2, 898.80 2, 049.76 1, 449.40
GM 0.21 1, 356.72 1, 435.16 4, 357.53 865.54 96.17
JE 556.93 1, 379.68 1, 379.68 2, 202.42 1, 163.54 822.74
LA 0 1, 483.53 1, 297.08 3, 829.01 1, 075.59 260.87
SM 1, 270.34 1, 270.34 1, 270.34 1, 270.34 − −
CODES 664.97 905.21 905.21 1, 145.44 339.74 240.23
ESTATE 842.06 842.06 842.06 842.06 − −
GURU 839.99 839.99 839.99 839.99 − −
GF 0 618.61 618.61 1, 237.22 874.84 618.61
BUSINESS 610.44 610.44 610.44 610.44 − −
VC 0 939.10 583.80 3, 999.93 1, 128.59 273.72


